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Abstract

A fuzzy neural network with memory connections for classi"cation, and weight connections for selection is introduced,
thereby solving simultaneously two major problems in pattern recognition: pattern classi"cation and feature selection. The
proposed network attempts to select important features from among the originally given plausible features, while maintaining
the maximum recognition rate. The resulting value of weight connection represents the degree of importance of feature.
Moreover, the knowledge acquired by the network can be described as a set of interpretable rules. The e8ectiveness of this
new method has been validated by using Anderson’s IRIS data. The results are: "rst, the use of two features selected by
our method from among the original four in the proposed network results in virtually identical classi"er performance; and
second, the constructed classi"er is described by three simple rules that are of if–then form. c© 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The recognition of patterns is the basis of all
science. The aim is to discover a structure in a
system consisting of partial subsystems. Usually,
something structured refers to the knowledge of the
state of a partial subsystem allowing us to easily
guess the state of other parts of the same whole sys-
tem [25]. Techniques of pattern recognition can be
generally described as deterministic, statistical, or
fuzzy in terms of their axiomatic bases. Traditional
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statistical classi"cation methods usually try to "nd a
clear cut boundary to divide the pattern space into
some classi"cation regions based on some pre-de"ned
criterion, such as maximizing deviation-between-
groups divided by deviation-within-groups in the
linear discriminant analysis (LDA) [10]. As pointed
in [2], it is impossible to provide information of
degree of uncertainty for a particular example for
LDA method since the error rate estimate is a statis-
tical result of the entire sample set. In fact, pattern
recognition systems are systems that automatically
identify objects based on their measured properties
or features derived from these properties. With this
viewpoint, a neural network also is a pattern recog-
nition system. The existing neural networks that can
be served as classi"ers may be grouped into four
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categories or their variations: backpropagation (BP)
[20], adaptive resonance theory (ART) [4], radial
basis functions (RBF) [11], and probabilistic neural
networks (PNN) [22]. The "rst three are based on
the deterministic axiomatics, and the last one is based
on the probabilistic-statistical axiomatics. Although
these techniques have been proven to be useful tools
for pattern classi"cation, the selection of features still
is a challenge.
Since fuzzy set theory was suggested in 1965 [26],

pattern recognition problems have been intensively
studied with fuzzy set [3]. The revolutionary signi"-
cance of fuzzy set theory is that it provides a math-
ematical method for describing intuitive knowledge
of humans. In principle, a mathematical model con-
structed in accordance with the classical theory must
be interpreted in natural language that could be under-
stood intuitively. In contrast to classical methodology,
a fuzzy approach to modeling begins with a practical
interpretation of concepts, and then generates intuitive
logical relations between concepts and constructs a
model. A model constructed in accordance with the
fuzzy theory, therefore, is certainly interpretable. This
methodology is called ‘empirical-semantic’ approach
in [24], and this modeling method is called ‘linguis-
tic’ modeling in [23]. In recent years, a great deal
of attention has been directed toward using the fu-
sion of fuzzy logic and neural networks to develop
intelligent systems. This is because the two technolo-
gies are strongly complementary to each other [8,19].
Keller [6], for example, incorporated fuzzy member-
ship functions into the Perceptron learning algorithm.
Archer [2] used fuzzy set representation in neural net-
work classi"cation problems.
There are two main aspects to the e8ort of pattern

recognition: pattern classi"cation and feature selec-
tion. Although many e8orts have been made, we still
do not have a complete and satisfactory technique that
can simultaneously deal with the above two problems.
Bezdek [3] proposed a measure of feature selection
that works only for binary data. Kuncheva [9] pro-
posed a new selection criterion using the concept of
fuzzy rough sets. The latter overcome the limitation of
the former; however, combinatorial explosion would
become a major problem for the cases in which there
are more than a small number of features.
On the other hand, in order to solve the initial-

ization problem and the normalization problem with

traditional learning vector quantization (LVQ) [7],
a proportional learning vector quantization (PLVQ)
method was introduced in [12,14]. PLVQ is a gener-
alized learning vector quantization based on a fuzzy
learning law (FLL). Section 2 of this article provides
an overview of the PLVQ algorithms, since the FLL is
employed in the presented network. Section 3 of this
article describes our feature-weighted detector (FWD)
network that can ful"ll both tasks of feature selection
and pattern classi"cation. Section 4 includes two ex-
amples to verify the e8ectiveness of our FWD. For the
sake of understanding, an arti"cial data set is chosen in
the "rst example. In the second example, the data set
used is Anderson’s IRIS data [1] that has been widely
studied, allowing us to easily analyze and compare our
new technique with existing methods. Finally, Section
5 contains a summary and conclusions.

2. Proportional learning vector quantization

As well known to all, LVQ is a clustering algorithm
for organizing a large number of unlabeled vectors
into some given clusters. Although some good prac-
tical results have been obtained with it, the method
still su8ers from an initialization problem [18] and a
normalization problem [14].
Based on Hebb’s learning postulate, we assume that

a desired learning rule for weights of LVQ network
should satisfy the following di8erential equation in
continuous space:

dmi

dt
= �tui(x)(x−mi) (1a)

or, in discrete domains, we have

Nmi = �tui(x)(x−mi); (1b)

where x denotes the input vector,mi denotes the mem-
ory vector of neuron i. ui(x) represents the output
value of neuron i when x is presented in input layer.
�t = �(1− t=T ) is referred to as temporal learning rate
in [18]. To "nd the mathematical expression of ui(x)
and its physical meaning, consider the following loss
function L as introduced in [13,15]:

L =
c∑

i=1

N∑
k=1

uik‖xk −mi‖2; (2)
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where uik ≡ ui(xk) represents the degree to which in-
put xk (xk =(xk1; xk2; : : : ; xkp)) matches memory vec-
tor mi (mi =(mi1; mi2; : : : ; mip)). N is the number of
data and c is the number of clusters. The number of
clusters here is equal to the number of output layer
neurons. p is the number of features, i.e., the num-
ber of input layer nodes. Using the method of the
maximum-fuzzy-entropy interpretation [15] and the
normalization condition (

∑c
i=1 uik =1 for each k), the

following solution that minimizes the loss function L
was found:

uik = exp
[
−‖xk −mi‖2

2�2

]/

c∑
j=1

exp
[
−‖xk −mj‖2

2�2

]
; (3)

where � is a nonzero number that can be chosen by
user. Physically, � represents the fuzziness in clus-
tering. The smaller the � is, the less the fuzziness is.
There is no theoretical basis for choosing an optimal
�. A heuristic guideline is �=0:25

√
p but not limited

to this. Note that p represents the number of features
here. ui(xk)∈ [0; 1] is a fuzzy membership function.
For a given �, if the closer the input xk is to the mem-
ory mi, then the closer the output ui(xk) is to one; if
the more the input xk is away from the memory mi,
then the closer the output ui(xk) is to zero. From Eqs.
(1b) and (3), it is clear that each input updates all the
weights (i.e., memory connections {mi}) in propor-
tion as their output values. Eq. (1) was called FLL
in [14], and ui(xk) also can be called special learn-
ing rate corresponding with temporal learning rate �t .
When �→ 0; ui(xk)= {0; 1}, and thus the FLL re-
duces to competitive learning law (CLL) [7]. The cor-
responding algorithm is referred to as PLVQ. It has
been shown that PLVQ avoids above two problems
with LVQ.

The PLVQ Algorithm
(1) Fix 26c�n; �¿0; �¿0 and the maximum num-

ber of iterations T .
(2) Initialize {mi(0)} and learning rate �0 ∈ [0; 1].
(3) For t=1; 2; : : : ; T ;

For k =1; 2; : : : ; N ;
(a) Calculate {ui(xk)} using Eq. (3).

(b) Update {mi(t)} based on Eq. (1b), i.e.,

mi(t) =mi(t − 1)

+�0(1− t=T )ui(xk)(xk −mi): (4)

(c) Next k.
(4) Calculate E=

∑c
i=1

∑p
j=1 |mij(t)− mij(t − 1)|.

(5) IF E¡� or t¿T stop; ELSE next t.

3. Feature-weighted detector networks

A feature-weighted detector (FWD) network is
shown in Fig. 1. The network consists of input (I),
matching (M), detecting (D) and output (O) layers
(Fig. 1(b)). Below, we give a description of this
network in detail.

3.1. Input–output relations

As shown in Fig. 1(b), each M node can receive in-
puts from two sources: the left–right input; and right–
left input from a node of D via a D–M adaptive
connection. f( ) is a comparative function, and the
output is the di8erence of two input values. In detect-
ing layer, there are two types of node: forward and
backward nodes. Each forward-node receives p in-
puts from p nodes of M via pathways with weight
connections {wij}. g( ) is Gaussian functions. Each
backward-node receives an input from a node of O
via a backward-pathway with 1 connection "xed. b( )
is a linear function. The functional of the output layer
nodes is to give "nal classi"cation score for each in-
put by normalizing output values of all D nodes. Each
O node receives c+1 inputs. One of them is called set
signal. The other c’s are from D via c pathways with
1 connection "xed. Set signal occurs before input is
presented to the input layer. The role of the set signal
is to provide an equal opportunity to match the input
for each of M nodes. Before input xk is coming, set
signal si=1, and thus vi = si =1 (i=1; 2; : : : ; c), since
b( ) is a linear function. This guarantees that each of
neurons have an equal opportunity to match coming
input. When input xk is coming, outputs of node of
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Fig. 1. (a) A schematic diagram of the FWD network model. (b)
Structure and interconnection of neuron i.

neuron i are:

yij = (xkj − mji); j = 1; 2; : : : ; p; (5)

zi = exp


− 1

2�2

p∑
j=1

w2
ij(xkj − mji)2


 ; (6)

ui = zi
/ c∑

j=1

zj: (7)

3.2. Learning laws

In FWD networks, there are two types of learn-
ing when input is presented to the input layer. One
is memory learning. The other is weight learning. mi

represents the memory of neuron i. Memory learning
is unsupervised, and the updating rule is based on the
FLL, i.e.,

Nmi = �tui(xk)(xk −mi); (8)

where xk represents the kth input. On the other hand,
in weight learning wij represents the degree to which
feature j contributes to the cluster i. In order to "nd the
updating rule of {wij}, introduce the following error
function:

E =
1
2

N∑
k=1

c∑
i=1

(ui(xk)− di)2; (9)

where di is the desired value of output layer node i.
Therefore, unlike memory learning, weight learning
is supervised. Based on the chain rule of di8erential
calculus, using Eqs. (9), (7) and (6) the following
updating rule is obtained:

Nwij =
$

�2s2
(ui(xk)− di)

×t


 c∑

j=1

zj − zi


wijzi(xkj − mji)2; (10)

where $¿0 is learning rate. For the sake of under-
standing, design 06wij61 for each i and j. wij =0
means that feature j has no ‘contribution’ to cluster
i; and wij =1 means that feature j has the most con-
tribution to cluster i. The algorithm can be stated as
follows.

Feature-weighted Detector (FWD) Network
Algorithm

1. Fix �¿0; �∈ [0; 1]; $¿0; �¿0, and the maximum
number of iterations T .

2. Initialize {mi(0)}, using c samples randomly cho-
sen from {xk} (k =1; 2; : : : ; N ), and wij(0)= 1 for
each i and j.

3. For t=1; 2; : : : ; T ; For k =1; 2; : : : ; N
(a) Calculate {ui} using Eq. (7).
(b) Update {mi(t)} using Eq. (8).
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Fig. 2. Data set of Example 1.

(c) Update {wij(t)} using Eq. (10).
(d) Next k.

4. Calculate E using Eq. (9).
5. IF E¡�, or t¿T stop, ELSE next t.

4. Applications

Two examples have been selected to illustrate the
performance of our FWD network. The purpose of
selecting Example 1 is to help us to intuitively under-
stand the physical meaning of the method. From the
result of Example 2, a potential application value of
the presented method should be shown.

4.1. Example 1—an arti:cial data set

For simplicity and intuition, we applied an arti"-
cial data set in which each pattern has two plausible
features as showed in Fig. 2 to FWD. From the dis-
tribution of the data, it is clear that feature x1 of this
example has no contribution to the classi"cation that
follows the target outputs of Table 1.
For data set of Fig. 2, we run the FWD with

�=0:058; �=0:01; $=0:1 and �=0:35. In this ex-
ample, the number of input layer nodes is two (i.e.,
p=2), and the number of output layer nodes is also
two (i.e., c=2). After 218 iterations, for each input
the actual output is listed in the right two columns of
Table 1. This classi"cation is fuzzy. The item ‘target
output’ of Table 1 list the desired output when input
k is presented to the input layer of the FWD. In the
Table 1, ui represents the output of neuron i. Here
one neuron corresponds to one cluster. Each pattern

should be assigned to either of two clusters in hard
classi"cation as shown in the item of ‘target output’
of Table 1. Obviously, if transforming the actual out-
put listed in the right two columns of Table 1 into
0–1 binary value, then the actual classi"cation result
of the FWD is identical with the target in this exam-
ple. Preferably, after learning, the resulting weight
connections of the FWD are w1 = (0:10; 0:99) and
w2 = (0:15; 0:99). The contribution of feature x1 to
the cluster 1 is w11 = 0:10; the contribution of feature
x1 to the cluster 2 is w21 = 0:15; the contribution of
feature x2 to the cluster 1 is the same as that to the
cluster 2, i.e., w12 =w22 = 0:99. It shows that feature
x1 can be eliminated from the plausible features set
selected initially since the degree of the importance of
feature x1 is much less than that of feature x2. There-
fore, the presented FWD enables the classi"cation of
pattern, and as well the selection of feature.

4.2. Example 2—an application to IRIS data

IRIS data [1] has been used in many papers to il-
lustrate various clustering methods [21,17]. The mo-
tivation of selecting IRIS data here is since we have
already known the typical performance of the existing
methods applied to it and also we can analyze feature
by means of the geometric structure as used in [3].
As well known, the IRIS data are a set of 150 four-
dimensional vectors. The plausible features selected
initially include sepal length (x1), sepal width (x2),
petal length (x3) and petal width (x4). The 150 IRIS
data used come from three subspecies (clusters): ses-
tosa, versicolor, and virginica. Each subspecies owns
50 samples, respectively. Anderson measured each
feature of 150 plants (samples). For this data, using
the existing methods the typical number of mistakes
is around 5 for supervised classi"ers, and around 15
for unsupervised classi"ers [17].
Shown in Table 2 are results of two experiments. In

the "rst experiment (Experiment 1), all of four plau-
sible features were used. The results are: the number
of mistakes, e=5; three weight vectors are w1 =
(1:00; 1:00; 0:95; 1:00); w2 = (0:00; 0:00; 1:00; 1:00),
and w3 = (0:00; 0:00; 0:82; 0:97). Based on this result,
it has been clearly shown that (1) features x1 and
x2 have no contribution to clusters s2 and s3, and
(2) the role of features x1 and x2 in cluster s1 also
can be jointly played by features x3 and x4. For this,
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Table 1
Classi"cation results of data set of Fig. 2

Data Target outputs Outputs of neurons

k x u1 u2 u1 u2

1 (0:05; 0:12) 1.00 0.00 0.989 0.011
2 (0:10; 0:20) 1.00 0.00 0.901 0.099
3 (0:15; 0:05) 1.00 0.00 0.998 0.002
4 (0:20; 0:10) 1.00 0.00 0.993 0.007
5 (0:20; 0:20) 1.00 0.00 0.899 0.101
6 (0:70; 0:35) 0.00 1.00 0.118 0.882
7 (0:75; 0:45) 0.00 1.00 0.008 0.992
8 (0:80; 0:40) 0.00 1.00 0.033 0.967
9 (0:85; 0:10) 0.00 1.00 0.002 0.998
10 (0:80; 0:10) 1.00 0.00 0.993 0.007
11 (0:83; 0:15) 1.00 0.00 0.974 0.026
12 (0:85; 0:19) 1.00 0.00 0.925 0.075
13 (0:90; 0:07) 1.00 0.00 0.997 0.003
14 (0:87; 0:13) 1.00 0.00 0.985 0.015
15 (0:10; 0:35) 0.00 1.00 0.122 0.872
16 (0:15; 0:45) 0.00 1.00 0.008 0.992
17 (0:20; 0:40) 0.00 1.00 0.032 0.968
18 (0:25; 0:50) 0.00 1.00 0.002 0.998

Table 2
Experimental results for IRIS data set

Experiment 1 Experiment 2
{x1; x2; x3; x4} {x3; x4}

� 0.50 0.50
� 0.01 0.01
$ 0.10 0.10
� 2.00 2.00
T 1000 1000

e 5 5
w1 (1.00, 1.00, 0.95, 1.00) (1.00, 1.00)
w2 (0.00, 0.00, 1.00, 1.00) (1.00, 1.00)
w3 (0.00, 0.00, 0.82, 0.97) (0.82, 0.97)

Features x1; x2; x3, and x4 represent sepal length, sepal width, petal length, and petal width,
respectively. e represents the number of mistakes in classi"cation, and {wi} represent weight
vectors.

features x1 and x2 is supposed being meaningless. In
order to prove that, in the second experiment (Ex-
periment 2) only features x3 and x4 were used. The
results of the second experiment are demonstrated in
the right column of Table 2: the number of mistakes
of the second experiment is the same as that of the
"rst experiment, i.e., e=5; three weight vectors are
w1 = (1:00; 1:00); w2 = (1:00; 1:00); w3=(0:82; 0:97).

Obviously, the use of two features x3 and x4 results in
virtually identical classi"er performance. After fea-
ture selection, therefore, only feature x3 (petal length)
and feature x4 (petal width) are chosen.
For the sake of description, above-selected two

feature variables are renamed: x1 now represents
petal length, and x2 petal width. When a new input
x=(x1; x2) is coming, using the obtained {wij}; {mji}
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and given �, based on Eqs. (6) and (7), we have the
following:

zi = exp
[
− 1
2�2 w2

i1(x1 − m1i)2
]

× exp
[
− 1
2�2 w2

i2(x2 − m2i)2
]

=UAi1 (x1)× UAi2 (x2); i = 1; 2; 3; (11)

uci = UAi1 (x1)UAi2 (x2)
3∑

j=1

UAj1(x1)UAj2 (x2)
;

i = 1; 2; 3: (12)

Note that z1; z2 and z3 are outputs that correspond, re-
spectively, class sestosa (c1), class versicolor (c2), and
class virginica (c3). Normalized uci(x) represents the
degree to which input x belongs to class ci (i=1; 2; 3).
Further, we have

UA11 (x1) = exp[−2(x1 − 1:46)2]; (13)

UA12 (x2) = exp[−2(x2 − 0:25)2]; (14)

UA21 (x1) = exp[−2(x1 − 4:29)2]; (15)

UA22 (x2) = exp[−2(x2 − 1:36)2]; (16)

UA31 (x1) = exp[−1:34(x1 − 5:54)2]; (17)

UA32 (x2) = exp[−1:88(x2 − 2:0)2]: (18)

The following three fuzzy rules, which correspond,
respectively, to i=1; 2; 3 in Eq. (11), are thus con-
structed:

R1 IF petal length is nearly 1.46 and petal width is
nearly 0.25, THEN it is sestosa.

R2 IF petal length is nearly 4.29 and petal width is
nearly 1.36 THEN it is versicolor.

R3 IF petal length is nearly 5.54 and petal width is
nearly 2.00, THEN it is virginica.

Note that IF-part in above rules corresponds to the
right-hand side of Eq. (11), and THEN-part the left-
hand side of Eq. (11), where fuzzy numbers, nearly
1.46, nearly 0.25, nearly 4.29, nearly 1.36, nearly
5.54, and nearly 2.00 are, respectively, represented
by fuzzy sets A11; A12; A21; A22; A31, and A33 in
Eq. (11). The numbers, 1.46, 0.25, 4.29, 1.36, 5.54,
and 2.00 are derived from Eqs. (13)–(18).

5. Conclusions

A fuzzy neural network that enables the classi"ca-
tion of patterns and the selection of features is intro-
duced. This algorithm includes two types of learning,
i.e., unsupervised learning for memory connection and
supervised learning for weight connection. Examples
that are provided has demonstrated the ability of the
feature-weighted detector (FWD) network to classify
pattern and select feature. Moreover, distinct to tradi-
tional neural networks for which it is usually diPcult
to interpret the obtained knowledge [5,16], our FWD
provides interpretable rules that are of if–then form.
These properties of the FWD suggest that it will be a
promising method for pattern recognition.
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